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Exact diagonalization and quantum Monte Carlo methods are used to explore the zero-temperature
phase diagram of a simplified Hubbard model extended with bond-charge—site-charge interactions. Nu-
merical results for the grand potential and for its first derivatives with respect to the Coulomb potential
and the chemical potential strongly suggest the occurrence of first-order phase transitions. It is shown
that there is a close analogy between the first-order ground-state phase transitions in this quantum sys-
tem and the phase transitions in classical (P, V, T) systems.

PACS number(s): 05.30.Fk, 71.30.+h

I. INTRODUCTION

The study of critical phenomena in quantum systems
heavily draws on analogies with classical statistical
mechanics. For continuous phase transitions, i.e., phase
transitions accompanied by a continuous change of state
[1], the connection between the critical properties of the
classical system at 7 >0 and the critical T =0 behavior
of the corresponding quantum system is well known.
Suzuki has shown how to express the partition function
of a d-dimensional quantum spin system as a partition
function of a (d +1)-dimensional Ising model with
many-spin interactions [2]. This equivalence was used to
prove rigorously the conjecture [3] that the singularities
in the thermodynamic functions of the (d+1)-
dimensional Ising model (with nearest-neighbor interac-
tions only) are in one-to-one correspondence to singulari-
ties in the ground-state properties of the d-dimensional
Ising model with a transverse magnetic field [2]. Also,
the critical behavior of the ground state of the one-
dimensional (ID) § =] XY model in a magnetic field is
the same as that of the two-dimensional (2D) Ising model
at the critical temperature [4]. A path-integral treatment
of the 1D S =1 XY model with single-ion anisotropy, in
combination with renormalization-group arguments, in-
dicates that at criticality the quantum system belongs to
the same universality class as the 2D planar rotator (XY)
model [5]. Heuristic arguments [6] suggest that for T>0
quantum-mechanical models fall into the same universali-
ty class as their classical counterparts, leading to the
same critical exponents, etc.

In this paper we study a many-body quantum model
that exhibits T'=0 phase transitions that cannot be asso-
ciated with a continuous change of state of the system.
The model studied is the simplified Hubbard model [7]
extended with bond-charge-site-charge interactions.
The simplified Hubbard model itself can be interpreted as
a model for an annealed binary alloy, for crystallization
[8,9], or to study mixed valence states in rare-earth com-
pounds [10]. Theé bond-charge-—site-charge interaction is
an off-diagonal part of the Coulomb interaction which
leads to a (dis)cpntinuous metal-insulator transition at
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half-filling [11]. »

The paper is organized as follows. In Sec. IT we specify
the model Hamiltonian and discuss its basic properties.
Results for the ground-state energy and other physical
quantities are presented in Sec. III, where we also discuss
how the T =0 phase transitions that occur in the quan-
tum model are related to conventional phase transitions
[1] provided a proper identification of the state variables
is made. Different views of the three-dimensional phase
diagram, given in Sec. IV, summarize our results.

II. MODEL

We will investigate the ground-state properties of the
Montorsi-Rasetti model [12], defined by the Hamiltonian

H=FH,+H, ,

#=L 3 S(a}q,+Hec.)

(i,j) 0,0’
t' +
-5 X X (a;,a;,+H.c.)
(i,j) o,0'

X(n, _otn; _o—yn;_,n;_,)

7‘[2=—,u22n,~,a+U2n,-,Tni,l .
i o i

" @2.1)

Here a,-’:[, and g; , are the creation and annihilation opera-
tors, respectively, for an electron with spin =1, | at lat-
tice site i, n; , denotes the number operator at site i, and
the sum (i,j) is over distinct pairs of nearest-neighbor
lattice sites on a d-dimensional hypercubic lattice with
periodic boundaries and of linear size L. ¢ is the hopping
parameter, ¢’ is the bond-charge—site-charge interaction,
U is the on-site Coulomb interaction, p is the chemical
potential, and y is a real number that controls the rela-
tive amplitude of the allowed hopping processes. If t'=¢,
F#, and #£, commute so that the total number of doubly
occupied sites is a conserved quantity [12].

Exact diagonalization and quantum Monte Carlo
(QMC) simulations have shown that for t'=t, at T=0
and for dimensions d =1,2,3, model (2.1) exhibits a Mott
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metal-insulator transition as a function of U [13,14]. A
discussion of the relation of the Montorsi-Rasetti model
to the Hubbard [15,16] and simplified Hubbard models
[8,15,17], the Falicov-Kimball model [10], and the Hirsch
model [18], as well as an extensive account of the static
and dynamic properties of Hamiltonian (2.1) for the case
t'=t can be found in Refs. [11,13].
Introducing new fermion operators [12]

1
Ai=_‘/——'2—(ai)f+ai’l) > (2.23)
Bi=%2(a“—a“) , (2.2b)

UD;,—pu, ifi=j.
0, otherwise .

As [D;, 4;]1=[D;, A;]=0 for all i and j, expression (2.4)
shows that the eigenstates of Hamiltonian (2.3) are also
eigenstates of the number operators D; [12]. According-
ly, the B; fermions cannot move. We will call these fer-
mions the immobile particles, in contrast to the mobile
particles represented by the operators 4; and A

For each set of eigenvalues {s; =0,1} of the D s Ham-
1ltoman (2.3) is a quadratic form of the fermion operators
(A, , 4;), hence the eigenstates of the many-particle sys-
tem are simply products of the single-particle eigenstates.
The latter are obtamed by diagonalizing the L X L matrix
M for each of the 29 configurations of the s;’s. For sys-
tems containing up to 16 sites the results presented below
are numerically exact. For larger systems, a QMC
method is used to compute the expectation values of ob-
servables [19]. For the present purposes, the QMC tech-
nique only serves to make sure that certain steplike struc-
tures that appear in the figures are finite-size effects. It
turns out that finite-size effects are easy to recognize and
that it is straightforward to account for them. Unless the
QMC data is revealing different physics, it will be omitted
for the sake of clarity. Furthermore, we will only present
results for one-dimensional systems because exact and
QMC calculations demonstrate that the 7 =0 phase tran-
sitions in the model do not depend on the dimensionality
of the lattice [14]. The lattice dimensionality is also not a
relevant parameter for most other model properties [14].

III. RESULTS

We will investigate the behavior of the grand potential
per site at T =0,

Q=— lim —lnTre “BH=] —d( %), (3.1)

p—>r

as a function of the model parameters U, and the density

n=N+D, (3.2)

if i and j are nearest neighbors ;
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and denoting the corresponding number operators by

N=A4'4,, (2.20)
and
D,=B/B,; , (2.2d)
Hamiltonian (2.1) can be written as
H= EA*M A;—pu3 D, 2.3)
where
(2.4)
T
where
1
—qum, (3.3)
and
1
DzFE(Di) ’ (3.4)

for various ¢’ (we use units such that t =1). For simplici-

ty, we will set ¥ =2 such that the system is invariant for

particle-hole symmetry [11]. The average double occu-

pancy per site will be denoted by
1

—5 ZAND;) . 3.5)

Numerical results for » =n(u) for the case ¢t'=t are

given in Fig. 1. For each curve U is kept constant. The
small steps are finite-size effects and disappear if the sys-
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FIG. 1. n as a function of p for a ring of 16 sites for t'=t =1,
Y =2, and B=100. From left to right: U=—8, —6, —4, —2,0,
2, 4,6, and 10.
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tem is made larger (QMC data are not shown). From
Fig. 1 it follows that there are three different regimes, de-
pending on the value of U.

For U =< —4 the system is known to be a nonmagnetic
insulator [14]. In Fig. 2 we present typical results for the
grand potential (2, the density n, and the average double
occupancy per site P in this regime. Taking, for example,
U=—38, Fig. 2(a) shows that Q is a concave function of
i, as expected [1]. There is a bend in the curve at
p=U/2. By symmetry, for this value of u, the density
n =1 [14]). At constant U (e.g., U=—8), very small
changes in p result in large changes in the density, as
exemplified in Fig. 2(b). The fact that du/dn |u= vy is
nonzero is due to finite-size effects. In the region where
ou/dn|,—y,,~0 two phases coexist. For u<—4.05,
n =0 and D =0, and hence there are no particles in the
system. On the other hand, for u= —3.95, n =2 and
D =1, and all the particles form pairs. Exact calcula-
tions for the canonical ensemble (results not shown)
demonstrate that for an even number of particles the im-
mobile particles are distributed randomly over the lattice.
For U< —4, P=n/2 and all mobile particles pair with
the immobile ones [13,14]. Therefore, precisely at half-
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filling, the ground state is 2%* times degenerate. For n < 1
and an odd number of particles, D =N —1 and all immo-
bile particles occupy one part of the lattice. Since all
mobile particles pair with the immobile ones (P=n /2),
this results in a lattice of which one part is occupied by
pairs of particles and another part that contains only one
mobile particle. For n>1 interchanging particles and
holes leads to a similar conclusion. These results suggest
that in the regime U < —4 the system exhibits phase sep-
aration between a phase with no particles and a phase
where all sites are filled with pairs of particles. At
U =2u, the two phases coexist.

Additional evidence for a first-order phase transition is
presented in Figs. 2(c) and 2(d). For fixed p (u=—4 in
this example), the grand potential is a concave function of
U and has a bend at U =2u. The presence of the bend is
reflected by the jump of the double occupancy as a func-
tion of U [see Fig. 2(d)]. Thus for fixed u the system ex-
hibits a first-order phase transition as a function of U.

It is instructive to compare Figs. 2(a)-2(d) with plots
of the typical behavior for the Gibbs free energy and its
first derivatives at a first-order phase transition in a clas-
sical (P, V, T) system (see, e.g., Ref. [1], p. 88). If we
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FIG. 2. Grand potential and first derivatives with respect to y and U as a function of u and U, respectively, for a ring of 16 sites
for t'=t=1, y=2, and B=100. (a) Q as a function of u for U=—8; (b) n = —9Q/3uly as a function of p for U=—8; (c) Q as a
function of U for u=—4; (d) P =30 /3U| u as a function of U for u= —4. The lines are guides to the eye.
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identify
Qu, U)=Gibbs free energy , (3.6a)
= Pressure , (3.6b)
U = Temperature , (3.6¢)

it is clear that there is a close analogy between the 7"=0
phase transition in the quantum model studied here and
the first-order phase transition in a classical system at
T >0. Note that the jump of the double occupancy in the
quantum model corresponds to the latent heat of the
transition in the classical system.

Additional support for this equivalence is given in Fig.
3, where we show results for |U| <4. In this regime the
system is a metal [14]. Figure 3(a) depicts (2 as a function
of u at constant U (U =—2 in this example). Q is a
monotonically decreasing function of u and has a bend at
pu="U/2. The two different nonzero slopes at the bend
indicate that, in contrast to the previous case U =< —4,
the density will not jump between zero and 2. Indeed,
Fig. 3(b) shows that, except for u= U /2, the density n
varies smoothly with u. The small steplike structures in
n=n(u) are due to finite-size effects. For u+#U/2,
du/dn|,; >0 and hence the system is in a stable state.
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When u<U/2, D=0 and N >0, i.., there are only
mobile particles in the system. On the other hand, for
u>U/2, N>0 and D =1, so that each lattice site is oc-
cupied by an immobile particle. At pu=U/2,
du/3n |y =0 and the two phases, characterized by D =0
and D=1, respectively, coexist.

According to our interpretation above we expect the
grand potential Q and the double occupancy P to exhibit
the behavior characteristic of a first-order phase transi-
tion and, indeed, as shown in Figs. 3(c) and 3(d), this is
the case. At constant 4 (u=—1 in this example), {} in-
creases with U for U <2u and is constant otherwise [see
Fig. 3(c)]. It has a bend at U=2pu and this bend corre-
sponds to the jump in the P vs U plot [see Fig. 3(d)].
Clearly a nonzero P requires D >0 so we must enter a re-
gime where immobile particles are present. Once we are
in this regime, P increases smoothly because of the in-
creasing number of mobile particles. The “plateau” in
P=P(U) [see Fig. 3(d)] is only a finite-size effect. Ap-
parently, also, these results are in concert with our inter-
pretation in terms of a first-order T =0 phase transition.

For U >4 and n+1 the system is a metal whereas for
n =1 it is an insulator [14]. For fixed U, n =n(u) exhib-
its a plateau at n =1 {(see Fig. 1). For n#1 the density
changes smoothly with p (if we disregard finite-size

“os | (e) 1

-4 -3 -2 -1 Y
U

FIG. 3. Grand potential and first derivatives with respect to u and U as a function of u and U, respectively, for a ring of 16 sites
for t'=t=1, y=2, and B=100. (a) Q as a function of u for U= —2; (b) n = —30Q/3u|y as a function of u for U=—2;(c) Q as a
function of U for p=—1; (d) P =03Q/3U]|, as a function of U for = —1. The lines are guides to the eye.
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effects). Hence the system does not phase separate if
U>4.

The first-order phase transitions described above per-
sist if 0<¢'<2¢. As in the ¢t'=t case, at half-filling and
T =0 there is a Mott metal-insulator transition at the
critical coupling U,=U_(¢') [11]. Unlike for ¢'=t, the
metal-insulator transition is discontinuous, i.e., with in-
creasing U the gap in the density of states opens abruptly
at the metal-insulator transition point U, [11]. For y=2
and 0<t’'<2t there are at most three regimes with
different physical behavior, namely, U< —U,, |U|<U,,
and U 2 U, corresponding to an insulator, a metal, and
an insulator (if n =1), respectively [11].

For |U| < U., the salient features of the ground-state
phase transitions are the same as in the case t'=¢. New
features appear if U< —U, and U= U,. For U = —4, as,
for example, shown in Fig. 4 for t'=0.5 and U=—6
(|U.|=3), Q is a concave function of p but instead of
having one bend, it now displays two. From Fig. 4(b) it
follows that these bends define a small range of u values
for which the system is half-filled (n =1); this is in con-
trast to the ¢’ =t case [compare with Fig. 2(b)]. In this re-
gime the immobile particles order into a two-sublattice
(bipartite) configuration with one sublattice completely
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occupied and the other completely empty (chessboard
configuration). Since for U< —4, Pzé, most of the
mobile particles pair with the immobile ones [11]. Away
from this regime calculations for a fixed number of parti-
cles (results not shown) demonstrate that for an even
number of particles the immobile particles order periodi-
cally with maximum possible spacing between them.
Since for U< —4, P~=n/2, most mobile particles pair
with the immobile ones [11]. For n <1 and an odd num-
ber of particles D =N —1 and all immobile particles or-
der into a chessboard configuration in one part of the lat-
tice. Since most of the mobile particles pair with the im-
mobile ones (P=~n/2), this results in a lattice of which
one part is occupied by pairs of particles ordered in a
nearly perfect chessboard configuration and another part
is pair free. For n > 1 interchanging particles and holes
leads to a similar conclusion. A plot of  as a function of
U for fixed p (u=—3 in this example) is given in Fig.
4(c). The position of the two bends in  vs U correspond
to the values of U at which the double-occupancy P
makes a jump [see Fig. 4(d)]. Figures 4(b) and 4(d) might
give the impression that n (respectively, P) is changing
smoothly, but analysis of QMC data (not shown) indi-
cates that this is not the case. The apparent smoothness

0F T Y ovce
(c)
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FIG. 4. Grand potential and first derivatives with respect to 1 and U as a function of u and U, respectively, for a ring of 16 sites
for t=1,t'=0.5, =2, and B=100. (a) Q as a function of u for U= —6; (b) n = —93Q/3du|y as a function of u for U= —6; (c) Q as
a function of U for p= —3; (d) P =9Q/3U| u as a function of U for u= —3. The lines are guides to the eye.
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disappears if the system size increases. These results sug-
gest that in the regime U < —4 and n <1 (n > 1) the sys-
tem exhibits phase separation between a phase with no
particles (a phase where all sites are filled with pairs of
particles) and a phase where pairs of particles are ordered
into a nearly perfect chessboard configuration. This is
the case for all t'#t (see, for example, the results for
t'=0 in Ref. [20]).

For fixed —4<U =< — U, (results not shown), n=n(u)
exhibits a small plateau of size A at n =1. For this small
range of u values the immobile particles are ordered into
a chessboard configuration. When u<(U —A)/2, D=0
and N >0, i.e., there are only mobile particles in the sys-
tem. At u=(U —A)/2,3u/dn|y;=0 and the two phases
characterized by D =0 and a nearly perfect chessboard
configuration of pairs of particles coexist. On the other
hand, for u>(U+A)/2, N>0 and D =1, so that each
lattice site is occupied by an immobile particle. At
p=(U+A)/2, 9u/dn|,;=0, so that now the two phases
characterized by D =1 and a nearly perfect chessboard
configuration of pairs of particles coexist. Similar
behavior is found if ' <0 or ¢’ =2t and —4 < U <0.

For U 2 U,, an example being shown in Fig. 5 for the
case t'=0.2 and U=6 (|U,.|=1.8), Q displays two bends
as a function of u defining a range A of u values for

c (b)

0.5 h

-
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which the system is half-filled. In this regime the immo-
bile particles order into a chessboard configuration.
Since for U 2 U,, P =0, most of the mobile particles fill in
the empty places of the chessboard configuration formed
by the immobile particles [11]. The three different
nonzero slopes at the bends indicate that, in contrast to
the case U < —4, the density will not jump between O, 1,
and 2. Indeed, Fig. 5(b) shows that, except for
pu=(UxA)/2, the density n varies smoothly with u
(apart from finite-size effects). When pu<(U—A)/2,
D=0 and N>0. At u=(U—A)/2, 9u/0n|y;=0 and
the two phases characterized by D =0 and a nearly per-
fect chessboard configuration of unpaired mobile and im-
mobile particles (P =0) coexist. On the other hand, for
u>(U+A)/2, D=1 and N>0. At u=(U+A)/2 the
two phases characterized by D =1 and a nearly perfect
chessboard configuration of unpaired mobile and immo-
bile particles (P~0) coexist. These features are also
present if ' <0 or ¢t' =2t and U >0. A plot of Q vs U for
fixed 4 (u=3 in this example) is given in Fig. 5(c). The
position of the bend in () vs U corresponds to the value of
U at which the double occupancy makes a jump [see Fig.
4(d)]. The other small jumps in P vs U are due to finite-
size effects.
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FIG. 5. Grand potential and first derivatives with respect to 1 and U as a function of p and U, respectively, for a ring of 16 sites
for t =1,t'=0.2,y=2, and f=100. (a) Q as a function of u for U =6; (b) n = —03Q/du|y as a function of u for U=6; (c) Q as a
function of U for u=3; (d) P =8Q/3U|,, as a function of U for p=3. The lines are guides to the eye.
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(b)

(c)

IV. SUMMARY

Various views on the schematic ground-state (U,n,t’)
phase diagram for ¢ =1 derived on the basis of the model
properties studied in this work are depicted in Figs. 6 and
7. We will consider the half-filled system first.

For n =1 [top plane in Figs. 6(a)-6(c)] and t'=0 the

FIG. 6. Various views on the schematic
ground-state (U,n,t’) phase diagram for y =2,
—1=U/6<1,0=n<1,and 0<¢'<t (t=1).
The phase diagram for 1 <n <2 follows from
the application of particle-hole symmetry.
White: only mobile particles are present. Red:
coexistence of two phases characterized by
D=0 and a nearly perfect chessboard
configuration of pairs of particles. Orange:
coexistence of two phases characterized by
D=0 and a nearly perfect chessboard
configuration of unpaired mobile and immobile
particles. Yellow: coexistence of a phase with
no particles and a phase where pairs of parti-
cles are ordered into a nearly perfect chess-
board configuration. Green: nearly perfect
chessboard configuration of unpaired mobile
and immobile particles. Violet: coexistence of
two phases characterized by D =0 and D =1.
Magenta: nearly perfect chessboard
configuration of pairs of particles. Light blue:
coexistence of a phase with no particles and a
phase where all sites are occupied by pairs of
particles. Blue tubes: regions without magnet-
ic or charge ordering. The ground state is 2%¢
times degenerate. Gray tube: coexistence of a
phase characterized by D =0 and a phase for
which the ground state is 2% times degenerate.
(a) - Top plane, n=1; front plane, t'=0; side
plane, U/6=1. (b) Top plane, n=1; front
plane, t'=0; side plane, U/6=—1. (c) Top
plane, n=1; front plane, t'=1; side plane,
U/6=—1. The thin lines are guides to the
eye.

system is insulating for U#0 and conducting for U =0.
For U>0 the system is ordered into a nearly perfect
chessboard configuration of unpaired mobile and immo-
bile particles (green region) while for U <0 the system is
ordered into a nearly perfect chessboard configuration of
pairs of particles (magenta region). The violet region in
which the system is conducting and is phase separated
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(a)

(b)

(c)

into a phase with D =0 and a phase with D =1 increases
with ¢’. The metal-insulator transition at the borders of
the green or magenta and violet regions is discontinuous.
For t'=1 the magenta and green regions are replaced by
regions where the system is insulating and has neither
magnetic nor charge ordering (blue tubes). For ¢'=1 the
metal-insulator transition occurs at U =4 and is continu-
ous.
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FIG. 7. Various slabs of the schematic
ground-state (U,n,t') phase diagram for
y=2,—12U/6%1, 0<n<l, and
0<t¢'<t(t=1). The phase diagram for
1<n<2 follows from the application of
particle-hole symmetry. Blue: no particles are
present. Yellow: coexistence of a phase with
no particles and a phase where pairs of parti-
cles are ordered into a nearly perfect chess-
board configuration. Red: coexistence of two
phases characterized by D =0 and a nearly
perfect chessboard configuration of pairs of
particles. Violet: coexistence of two phases
characterized by D=0 and D =1. Orange:
coexistence of two phases characterized by
D=0 and a nearly perfect chessboard
configuration of unpaired mobile and immobile
particles. White: only mobile particles are
present. Light blue: coexistence of a phase
with no particles and a phase where all sites
are occupied by pairs of particles. Blue tubes:
regions without magnetic or charge ordering.
The ground state is 29" times degenerate. (a)
Top plane, ¢t'=0.2; (b) top plane, t'=0.6; (c)
top plane, t'=1. The thin lines are guides to
the eye.

Away from half-filling it follows from Figs. 6(a) and
6(b) that for =0 (front plane) there are four distinct re-
gions: For U < —4 and for all n <1 the system is phase
separated into a phase with no particles and a phase
where pairs of particles are ordered into a nearly perfect
chessboard configuration (yellow region). In this region
the system is insulating. For —4 < U <0, there are only
mobile particles in the system up to some filling n (white



50 FIRST-ORDER PHASE TRANSITIONS IN THE MONTORSI-. ..

region) and above this filling there is coexistence between
a phase with only mobile particles and a phase where
pairs of particles are ordered into a nearly perfect chess-
board configuration (red region). For U =0, there are no
immobile particles in the system up to some filling n
(white region) and above this filling both (free) mobile and
(free) immobile particles are present. The system
separates into a phase characterized by D =0 and a phase
for which the ground state is 2°L times degenerate (gray
tube). For U >0, there are only mobile particles in the
system up to some filling n (white region) but, in contrast
to the —4< U <0 case, beyond this filling the system
separates into a phase with only mobile particles and a
phase where unpaired mobile and immobile particles are
ordered into a nearly perfect chessboard configuration
(orange region). For U > —4 and n <1 the system is con-
ducting.

For t'=1 [front plane in Fig. 6(c)] and n <1 there are
three distinct regions: For U < —4 and for all #n <1 there
is coexistence between a phase with no particles and a
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phase with 2% particles (light-blue region). Just as for
t'=0, in this region the system is insulating. For
U > —4, there are only mobile particles in the system up
to some filling n (white region) and above this filling the
system phase separates into a phase with D =0 and a
phase with D =1 (violet region). For U> —4 and n <1
the system is conducting. Information on the (U,n,t’)
phase diagram for ¢'#0,1 is provided by Fig. 7, where we
show different views of the interior of the phase diagram.

ACKNOWLEDGMENTS

We would like to thank F. F. Assaad for stimulating
discussions and useful suggestions. This work is partially
supported by the Stichting voor Fundamenteel Onder-
zoek der Materie (FOM), which is financially supported
by the Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (NWO), and a supercomputer grant of the
Stichting Nationale Computer Faciliteiten (NCF).

[1] L. E. Reichl, A Modern Course in Statistical Physics (Ed-
ward Arnold, London, 1980).

[2] M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).

[3]1R. J. Elliot, P. Pfeuty, and C. Wood, Phys. Rev. Lett. 25,
443 (1970).

[4] M. Suzuki, Prog. Theor. Phys. 46, 1337 (1971).

[5] O. F. de Alcantara Bonfim and T. Schneider, Phys. Rev. B
30, 1629 (1984).

[6] M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).

[7] J. Hubbard, Proc. R. Soc. London Ser. A 281, 401 (1964).

[8] T. Kennedy and E. H. Lieb, Physica A 138, 320 (1986).

[9]J. Jedrzejewsky, J. Lach, and R. Lyzwa, Physica A 154,
529 (1989).

[10] L. M. Falicov and J. C. Kimball, Phys. Rev. Lett. 22, 997

(1969).

[11] K. Michielsen, Phys. Rev. B 50, 4283 (1994).

[12] A. Montorsi and M. Rasetti, Phys. Rev. Lett. 66, 1383
(1991).

[13] K. Michielsen, Int. J. Mod. Phys. B 7, 2571 (1993).

[14] K. Michielsen, H. De Raedt, and T. Schneider, Phys. Rev.
Lett. 68, 1410 (1992).

[15] J. Hubbard, Proc. R. Soc. London Ser. A 276, 238 (1963).

[16] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

[17] U. Brandt and R. Schmidt, Z. Phys. B 67, 43 (1986).

[18] J. E. Hirsch, Physica C 158, 326 (1989).

[19] H. De Raedt and W. von der Linden, in The Monte Carlo
Method in Condensed Matter Physics, edited by K. Binder,
Topics in Applied Physics Vol. 71 (Springer, Berlin, 1992).

[20] P. de Vries, K. Michielsen, and H. De Raedt, Z. Phys. B
92, 353 (1993).



(a)

(b)

(c)

FIG. 6. Various views on the schematic
ground-state (U,n,t') phase diagram for y =2,
—12U/6=1,0=n=1,and 0=¢'=¢ (t=1).
The phase diagram for 1<n <2 follows from
the application of particle-hole symmetry.
White: only mobile particles are present. Red:
coexistence of two phases characterized by
D=0 and a nearly perfect chessboard
configuration of pairs of particles. Orange:
coexistence of two phases characterized by
D=0 and a nearly perfect chessboard
configuration of unpaired mobile and immobile
particles. Yellow: coexistence of a phase with
no particles and a phase where pairs of parti-
cles are ordered into a nearly perfect chess-
board configuration. Green: nearly perfect
chessboard configuration of unpaired mobile
and immobile particles. Violet: coexistence of
two phases characterized by D =0 and D =1.
Magenta: nearly perfect chessboard
configuration of pairs of particles. Light blue:
coexistence of a phase with no particles and a
phase where all sites are occupied by pairs of
particles. Blue tubes: regions without magnet-
ic or charge ordering. The ground state is 2%
times degenerate. Gray tube: coexistence of a
phase characterized by D =0 and a phase for
which the ground state is 2" times degenerate.
(a) Top plane, n=1; front plane, t'=0; side
plane, U/6=1. (b) Top plane, n=1; front
plane, t'=0; side plane, U/6=—1. (c) Top
plane, n=1; front plane, ¢t'=1; side plane,
U/6=—1. The thin lines are guides to the
eye.



(c)

FIG. 7. Various slabs of the schematic
ground-state (U,n,t') phase diagram for
y=2,— 15U 6=, 0<n<], and
0=<¢"<t(t=1). The phase diagram for
1<n <2 follows from the application of
particle-hole symmetry. Blue: no particles are
present. Yellow: coexistence of a phase with
no particles and a phase where pairs of parti-
cles are ordered into a nearly perfect chess-
board configuration. Red: coexistence of two
phases characterized by D =0 and a nearly
perfect chessboard configuration of pairs of
particles. Violet: coexistence of two phases
characterized by D=0 and D =1. Orange:
coexistence of two phases characterized by
D=0 and a nearly perfect chessboard
configuration of unpaired mobile and immobile
particles. White: only mobile particles are
present. Light blue: coexistence of a phase
with no particles and a phase where all sites
are occupied by pairs of particles. Blue tubes:
regions without magnetic or charge ordering.
The ground state is 29" times degenerate. (a)
Top plane, t'=0.2; (b) top plane, t'=0.6; (c)
top plane, t'=1. The thin lines are guides to
the eye.



